Beyond Developable: omputational Design and Fabrication with Auxetic Materials

نویسندگان

  • Mina Konaković
  • Bailin Deng
  • Sofien Bouaziz
  • Daniel Piker
  • Mark Pauly
چکیده

We present a computational method for interactive 3D design and rationalization of surfaces via auxetic materials, i.e., flat flexible material that can stretch uniformly up to a certain extent. A key motivation for studying such material is that one can approximate doubly-curved surfaces (such as the sphere) using only flat pieces, making it attractive for fabrication. We physically realize surfaces by introducing cuts into approximately inextensible material such as sheet metal, plastic, or leather. The cutting pattern is modeled as a regular triangular linkage that yields hexagonal openings of spatially-varying radius when stretched. In the same way that isometry is fundamental to modeling developable surfaces, we leverage conformal geometry to understand auxetic design. In particular, we compute a global conformal map with bounded scale factor to initialize an otherwise intractable non-linear optimization. We demonstrate that this global approach can handle non-trivial topology and non-local dependencies inherent in auxetic material. Design studies and physical prototypes are used to illustrate a wide range of possible applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Geometric Transformations to Auxetic Metamaterials

The paper introduces a new alternative towards fabrication of auxetic metamaterials (materials with negative Poisson’s ratio) controlled by geometric transformations. These transformations are derived from the theory of small (infinitesimal) elastic deformation superimposed on finite elastic deformations. By using this theory, a cylindrical region filled with initial deformed foam is transforme...

متن کامل

Design of planar isotropic negative Poisson’s ratio structures

Most of the auxetic materials that have been characterized experimentally or studied analytically are anisotropic and this limits their possible applications, as they need to be carefully oriented during operation. Here, through a combined numerical and experimental approach, we demonstrate that 2D auxetic materials with isotropic response can be easily realized by perforating a sheet with elon...

متن کامل

Dimpled elastic sheets: a new class of non-porous negative Poisson’s ratio materials

In this study, we report a novel periodic material with negative Poisson's ratio (also called auxetic materials) fabricated by denting spherical dimples in an elastic flat sheet. While previously reported auxetic materials are either porous or comprise at least two phases, the material proposed here is non-porous and made of a homogeneous elastic sheet. Importantly, the auxetic behavior is indu...

متن کامل

Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity

Metallic auxetic metamaterials are of great potential to be used in many applications because of their superior mechanical performance to elastomer-based auxetic materials. Due to the limited knowledge on this new type of materials under large plastic deformation, the implementation of such materials in practical applications remains elusive. In contrast to the elastomer-based metamaterials, me...

متن کامل

Theory of Strains in Auxetic Materials

This paper is dedicated to Prof. Jacques Friedel, an inspirational scientist and a great man. His excellence and clear vision led to significant advances in theoretical physics, which spilled into material science and technological applications. His fundamental theoretical work on commonplace materials has become classic. We can think of no better tribute to Friedel than to apply a fundamental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016